A Strategy for Deployment of Diesel Particulate Filters (DPFs)

An Overview of the NIOSH-MSHA DPF Selection Guide

George H. Schnakenberg, Jr. NIOSH-Pittsburgh

Situation

- * Coal rule requires use of aftertreatment devices to curtail DPM emissions on all nonpermissible heavy-duty diesel-powered equipment, generators, air compressors ... that emit DPM at a rate greater than 5 g/hr.
- Your management picked you to ensure that the requirement is met! – What now?

Choices do *not* include

- Different fuels (biodiesel, water emulsions, low sulfur)
- Fuel additives
- * Other devices/schemes such as "magic" gizmos and derating, i.e., anything before the tailpipe (excluding maintenance)

2

Choices include

- Disposable "paper" filter after water scrubber or dry heat exchanger, i.e., a permissible system,
- # High temperature disposable filter,
- Regenerating permanent Diesel Particulate Filter (DPF)

Selecting options -- considerations

- ★ Size available space on vehicle
- * Operating complexity & fit to production
- * Initial capital cost
- Consumable costs (e.g., paper filters, filter cleaning, fuel additive)
- Installation complexity and cost
- * Maintenance complexity & cost
- * More ...?

5

Impact of aftertreatment systems

- * Device installed on engine-vehicle
- May affect vehicle operation and schedule
- Imposes responsibilities on the vehicle operator
- Will require routine maintenance engine & DPF
- May require increased technical skills

You're it! What now?xxx

- *Attend a workshop good, I see you are here
- Consider your options
 - * What can you use
- *What can't you useUse the new NIOSH-MSHA filter selection guide available *now* on the web ...

7

Deployment Details

- Filter Selection: based upon available space, exhaust temp, vehicle deployment & schedule & available systems – MUST BE A FIT between Filter and equipment
- *Installation: location, mounting, vibration isolation, insulation (in some cases), isolated from combustibles, not block engine maintenance, etc.

Deployment Details

- Maintenance: New procedures and tasks both to engine and to the DPF. Additional pressure monitoring systems, electric regeneration systems will require service. – additional daily or PM tasks
- * Equipment operator: DPF may need daily attention; back pressure monitoring and actions to be taken when it alarms...

9

Deployment Details

- Site alterations for regeneration—electrical, space, ventilation
- * Training: Maintenance & engine mechanics (could be a contractor), vehicle operator.
- Follow-up environmental measurements: Ventilation, DPM, gas measurements if affected by DPF (NO₂ for example)

Multidisciplinary task requiring coordination of several mine departments or persons who must work as a team.

A Filter "Champion" is needed

- * DPF deployment is not the "norm."
- * Requires additional knowledge
- Demands teamwork and cooperation of many mine people and functions
- Mine management must provide the authority and responsibility
- Must be part of the job, not incidental, not treated superficially, at least initially

11

Resources/Help

- * Workshop
- NIOSH-MSHA Diesel Particulate Filter (DPF) selection guide www.cdc.gov/niosh/mining/toolbox.htm
- * NIOSH IC9462
- *** MSHA & NIOSH**
- * www.dieselnet.com
- * www.deep.org
- * Aftertreatment manufacturers

DPF Selection Guide - Overview

13

DPF Requirements -- Engine

DPFs collect soot → the more soot that the engine produces the more must be trapped and must be gotten rid of

Ensure Lowest Engine PM Emissions

- * If 2-stroke engine, consider replacing it
- * Properly derate for elevation
- Check oil consumption & fix if above normal
- Check CO emissions from bare engine (w/o DOC) and reduce to "normal" for that engine model; use emissions based maintenance
- Continually track & correct above items if using DPFs (best that it be done for all diesel equipment) – institute emission-based maintenance

15

...Lower Engine PM Emissions

- Less soot to deal with
 - * Longer run time on disposable filter
 - * Smaller DPF possible
- # How?
 - * De-rate the engine, if possible.
 - Less fuel consumption
 - Less wear & tear on the tires, etc.
 - Consequence: may have to change torque converter and/or gearing
 - Consider biodiesel (untested hypothesis)

Exhaust Temperature Profiling

- * Why profile?
- * Who should do it?
- * How to do it yourself

17

Why profile exhaust temperatures?

- Filter selection
 - Temp limits on high-temp "paper" filter
 - Selection of regeneration method for DPFs
- Provide details of engine loading over the shift; engine idle vs. work times, etc. – duty cycle profile

Who should do it - alternatives

- *Yourself or your staff
- # Hire a contractor
- **★** Use a DPF supplier

Weigh the pros and cons of each, but whatever your choice, *make certain that* <u>you own the data</u>.

19

How to do temp profiling yourself, -1

Mention of any company name or product does not constitute endorsement by the National Institute for Occupational Safety and Health.

- Purchase the following:
 - * Type K, stainless jacketed thermocouple (TC)
 - * Miniature battery-powered data logger
 - OMEGA OM-SL L620
 - * HOBO H12-002 + BC3 7-ON
 - 10' TC extension with Plug and Jack connectors
 - Pipe thread to compression fitting to hold TC

Temp Profiling Equipment

21

Temp Profiling, How to, -2

- Locate TC in exhaust system where inlet to DPF would be
- Locate a place on the circumference where there is clear access for TC
- ♣ Perforate exhaust pipe with ½" hole and weld ½" pipe coupling to surface over the hole
- Install TC in fitting and adjust so tip is in the center of the exhaust pipe

Temp Profiling, How to – 3

- Mount the data logger in a protected location away from heat
- Route extension between logger and TC in exhaust keeping it clear of moving parts
- Use tie wraps or bailing wire to secure logger and extension wire

23

Temp Profiling, How to – 4

- Start logger at start of shift; stop logger at end of shift; identify vehicle and shift in a record book
- At end of each shift, download data according to logger instructions; reset logger
- Repeat so that the full variety of shifts for this equipment is represented several times
- * Use logger software to save temperature data in degrees C as a *.txt file compatible with Excel® or other spreadsheet software.

Temperature data analysis

- Load/import data into a blank spreadsheet
- * Open the NIOSH analysis spreadsheet
- * Copy data
- * Look at results:
 - What is the temperature where 30% of the data points are higher?
 - Look at many of the shift logs and note the lowest "30%" temperature, T_{30%} of the bunch.
- * Select a DPF system

Caveat: The above is not a sophisticated analysis; DPF suppliers may use a more comprehensive analysis

25

Exhaust temperature implications

- ★T_{30%} is >325°C (620°F) a selfregenerating "passive" DPF is possible
- ★T_{30%} is <325°C a manually regenerated "active" DPF is required

26

Passive (self-regenerating) DPFs

- \star T_{30%} >550-600° C, uncatalyzed "bare" trap
- ★ T_{30%} >380-420° C, base-metal catalyzed trap
- * T_{30%} >3xx° C, "5g" Pt-catalyzed trap
- * T_{30%} >330° C, lightly Pt-catalyzed trap + fuel borne catalyst (new information)
- ★ T_{30%} >325°C, "50g" Pt-catalyzed trap

The above temperatures are approximate; only the DPF supplier can properly make the recommendation.

~~UPDATED INFORMATION ~~

27

Passive DPF Considerations

- Consistent work cycle required; exhaust temperatures must always be high enough several times during shift to ensure proper soot removal
- Consequence of insufficient regeneration is the increase in exhaust backpressure
 - Increases forces on DPF (164 lbs @ 12" dia, 42 in WG)
 - May invalidate engine warranty

MUST INSTALL BACK PRESSURE MONITOR and ALARM

PT-catalysts (50g loading)
 Observed increase in NO₂ emissions depending on Pt loading

 SAMPLE WORKPLACE FOR NO₂ AFTER INSTALLING A
 Pt-Catalyzed DPF

Passive DPF Installation Considerations

- Minimize the exhaust run between engine and DPF
- Ensure upstream pipe connections do not leak
- Insulate exhaust pipe between engine and DPF
- Insulate DPF
- Reminder: Install Back Pressure Monitor & Alarm with logging
- * Continue: Temperature logging

20

Post DPF Installation Tasks

- At engine PM, make <u>Bacharach</u> smoke number measurement downstream of DPF – keep records
- Examine back pressure logs or interview operator about normalcy of BP readings or alarms
- Periodically (~1000 hrs) rid the DPF of ash build up (DPF Cleaning) in method approved by manufacturer

Bacharach True Spot Smoke Test

Back

31

Manually Regenerated (Active) DPFs

- * Can be used at *any* exhaust temperature
- Must be used if exhaust temperature profile indicates that the temperature is under 325 to 350 °C for more than 70% of the time (equivalent to saying only 30% of the temp data lies over 325-350°C).

Manually (Actively) Regenerated DPFs

Regeneration Location	Options
Off-board	DPF Exchange
On-board	On-board controllers
	Off-board controllers

33

Off-board Regen Considerations ~DPF Exchange~

- ◆ DPF size keep small enough for one person to handle easily; use multiple DPFs for large engines
- * Locate DPF on equipment for easy access
- Gas-tight flange, quick disconnect
- Develop DPF exchange logistics
 - * When (between shifts)
 - Who
 - Where
 - DPF transport
- Regeneration station location

Off-Board Regen – Vehicle

35

Off-board regen station

On-board electric regeneration with On-board regeneration controller

- * DPF can be located anywhere on vehicle
- * Keep combustibles clear of DPF
- Need 1 − 2 hr of equipment off-duty time daily or between shifts
- Requires only a connection to electrical power for regeneration → flexible regen locations
- Moderate ventilation required during regen
- On-board controller subjected to vehicle shock and vibration → must be robust

37

On-board electric regeneration with Off-board regeneration controller

- * DPF can be located anywhere on vehicle
- * Keep combustibles clear of DPF
- Need 1 − 2 hr of equipment off-duty time daily or between shifts
- Requires air, sensor, power connections to a regeneration control station
- * Vehicle must be parked at a control station for that system model → restricts end-of-shift parking locations
- Moderate ventilation required during regen

Emerging Systems

- On board manual regeneration using air intake restricted engine
- Fuel burner "passively active" regeneration

30

Post DPF Installation Tasks Manually regenerated DPFs

- At engine PM, make Bacharach smoke number measurement downstream of DPF – keep records
- Interview operator about normalcy of BP readings or alarms; do not operate vehicle for extended periods with high back pressures
- Stress to operator the need to exchange or regenerate DPF at the prescribed intervals
- Periodically (~1000 hrs) rid the DPF of ash build up (DPF Cleaning) in method approved by manufacturer

Filter Selection Guide

★ Demo <u>− go there</u>

41

Resources

- Diesel-underground-L listserver JOIN diesels-underground-L your name Listserv@listserv.cdc.gov
- * DPF Selection Guide hot exhaust filters
 - * MSHA web site
 - * NIOSH, mining toolbox
- * www.dieselnet.com
- * NIOSH IC9462